Автоматизация отчета по расходам на рекламные кампании федеральной фармацевтической компании

Заказчик
Фармацевтическая компания полного цикла, которая запускает интернет-рекламу на десятках площадках Рунета.
Задача
Основной задачей являлась разработка отчета по четко регламентированной структуре, которая принята в организации.

Для оценки эффективности запусков формируется отчет в MS Excel на основе разрозненных данных: вручную формирующиеся выгрузки и листы в файле xls. Процесс выглядит так, аналитик еженедельно выгружает данные из рекламных кабинетов в определенном формате, складывает их в Excel и потом производится анализ.

Конечно, у такой схемы есть очевидные плюсы в том, что для реализации отчетности:

  • нет необходимости в специализированной базе данных, то есть не нужны тех. специалисты, которые будут обеспечивать настройку, работоспособность и ее безопасность;
  • не нужны коннекторы к рекламным площадкам;
  • не нужны сильные экономические вливания на запуск системы, по сути вы оплачиваете только время сотрудника который вручную собирает данные.

Давайте теперь посмотрим на минусы:

  • человеческий фактор — если один человек занимается формированием такой отчетности, то он может отказываться от внесения каких-то правок, ошибиться, взять больничный, уйти в отпуск, уволиться, не успеть из-за текущей загрузки. Если несколько людей занимаются этим вопросом, то их работу нужно координировать, улаживать конфликты если кто-то ошибся или не сделал обещанное;
  • технологический фактор — представьте что вы собрали данные за прошлую неделю, а через какое-то время площадка пересчитала статистику (недействительные клики, сбои). В этот момент ваша отчетность перестает сходится с данными в рекламных площадках. И чтобы исправить ситуацию, нужно сначала обнаружить время где произошло изменение данных, а потом исправить выгрузку за это время;
  • вероятность ошибки в отчете явно больше нуля, это следствие человеческого и технологического факторов;
  • жесткость системы, если вы решили изменить отчет и добавить в него какие-то данные, то с большой долей вероятности придется переделывать все предыдущие выгрузки, возможно отчет в целом. Причем мы получаем не интеллектуальную и интересную работу для специалиста, а тупую рутинную — выкачать, скопировать, вставить. Тут может включиться человеческий фактор;
  • на сбор и обработку нужной информации, аналитики могут тратить гораздо больше времени чем на ее анализ и получается что вместо того чтобы думать как достигать и перевыполнять поставленные KPI компании, сотрудник думает о том, как бы собрать отчет чтобы данные в нем были корректные.

Ручной сбор данных в отчет — это не плохо, наоборот это отличный старт, просто в какой-то момент компания может понять, что минусы этой системы начали перевешивать все плюсы. Тогда возникает мысль: “А давайте автоматизируем процесс сбора данных”. Основной задачей являлась разработка отчета по четко регламентированной структуре, которая принята в организации. Отчет должен решить главную задачу — автоматизация получения и отображения данных о рекламных кампаниях, при этом набор источников (рекламных сервисов) обширен: от контекстной до медийной рекламы.

Выбор стека технологий.

Любая автоматизация должна начинаться с выбора стека технологий, на котором будет работать созданная система. Выбор нужного стека — это тема для отдельной публикации, поэтому мы не будем описывать общие принципы, а расскажем какой конкретный стек выбрал клиент.

Для реализации данной автоматизации нужны:

  • коннекторы, которые будут выгружать данные из рекламных кабинетов;
  • база данных (БД), куда будем загружать данные;
  • программа, которая будет визуализировать данные из БД.

Клиент рассмотрел множество возможных реализаций, от готовых систем сквозной аналитики, до совсем персональных решений и выбрал инструменты компании Microsoft, а именно:

  • БД - Azure.
  • Программа для визуализации - Power BI.

Под этот стек технологий отлично подходит сервис коннекторов myBI, который автоматизирует задачи по выгрузке данных из рекламных систем и Google Analytics (который является основной системой сбора информации о посетителях сайта).

Первые проблемы.

Несмотря на то, что myBI автоматизирует выгрузку, вместе с тем не все системы и рекламные источники были “перекрыты” сервисом. А это значит, что по ряду рекламных площадок мы не можем получить расходы в нашу БД.

Неприятным сюрпризом стало и то, что не все рекламные каналы можно было отследить в Google Analytics. Может возникнуть вопрос: "А как такое возможно?". На самом деле все очень просто — видеореклама без переходов на сайт. При этом задачу о загрузке данных по расходам на рекламу и сведение ее в отчетности никто не отменял.

Также в процессе изучения рекламных кампаний была выявлена проблема, не позволяющая построить необходимым образом иерархию данных в отчете, а именно: UTM метки хоть и составлялись по определенной схеме, но не всегда позволяли однозначно идентифицировать источник / канал трафика (на основе этих данных необходимо было построить фильтры по каналу направлению трафика). Аналогично и с названиями рекламных кампаний.

Эта проблема поставила под угрозу разработку отчетности. Дело в том, что данные по расходам мы берем из рекламной площадки, а информацию о посещении сайта и конверсиях из Google Analytics. Связать эти данные в БД мы можем по какому-то ключу. В качестве такого ключа выступают UTM метки и если они составлены таким образом, что по ним нельзя сделать корректный ключ для связи данных, тогда вы не можете корректно связать расходы и конверсии. В итоге разработка отчета заканчивается провалом.

Что делать если не хватает готовых коннекторов для выгрузки данных?

После обдумывания ситуации вместе с клиентом пришли к выводу, что часть источников данных будем вручную загружать в гугл таблицы. Ручная выгрузка частично осталась, но формат и структура данных подверглись серьезным изменениям. Все выгрузки привели к единому формату для всех возможных вариантов, чтобы по-максимуму упростить этот процесс и до минимума снизить вероятность появления ошибок.

Важно уметь идти на компромиссы, разработка и поддержка своих коннекторов — достаточно затратная статья расходов, поэтому в большинстве случаев проще купить подписку в готовом сервисе, типа myBi. Но даже используя готовые сервисы вы не застрахованы от ситуации когда в этом сервисе и вообще на рынке нет нужного готового коннектора. И тогда вы возвращаетесь к идее разработки и поддержки коннектора. И вот тут важно просчитать что выгоднее, делать свое решение для текущего рекламного источника или сделать ручную выгрузку.

Наш совет: если данная рекламная площадка работает не на постоянной основе или доля ее в общих расходах невысока, то лучше сделать ручную выгрузку.

Что делать если есть проблемы с UTM тегированием?

    Поскольку одним из требований являлось создание определенной иерархии данных, для UTM меток и названий рекламных кампаний был разработан стандарт, к которому в результате работы были приведены все рекламные кампании во всех системах.

  Разработка единого стандарта для UTM тегирования и следование ему в дальнейшем — обязательное условие для корректной работы отчета. Для проектов с небольшим количеством рекламных источников и с отсутствием требований к определенной иерархии каналов в отчете может хватить базовых рекомендаций по тегированию, которые легко найти в хороших статьях о UTM метках. А вот для проектов с большим количеством источников и определенным требованиям к иерархии в отчете нужно будет разрабатывать персональный стандарт.

Использование такого стандарта позволило выстроить необходимым образом иерархию для анализа данных:

  Поскольку весь отчет строится на анализе показателей недельными интервалами, то высшей точкой в иерархии является неделя, далее идет “направление” (или канал привлечения трафика), ниже источник, далее возможные варианты для конкретного источника и нижней точкой является кампания.

Другими словами — отчет отображает информацию от сводной информации за неделю до конкретной рекламной кампании в эту неделю.

Сложности учета медийной рекламы в отчете.

Учитывая специфику рекламных кампаний (значительный объем рекламные - видеоролики) клиентом была поставлена задача в обязательном порядке обеспечить вывод в отчете таких показателей как:

  • VTR - соотношение числа просмотренных полностью роликов к показам;
  • 1000CPV - стоимость 1000 досмотров роликов до 100%.

Чтобы получить необходимые значения (данные должны быть отражены из различных систем):

Для Google Рекламы были сформированы отдельные выгрузки в myBI с данными рекламным кампаниям, которые транслируют видеоролики.

  По оставшейся медийной рекламе получили 2 проблемы:

  • реклама которая не содержит ссылку на сайт, ее нет в Google Analytics;
  • реклама по которой нет готового коннектора для получения расходов и статистики.

Данные по таким рекламным кампаниям также нужно включить в итоговый отчет. Для решения этих проблем совместно с клиентом был разработан шаблон структуры файла, в который вручную вносятся данные по результатам просмотров видеоматериалов.

  Чтобы обеспечить необходимый функционал в отчете для рекламных площадок без посещений, в Google Analytics нужно сделать несколько дополнительных действий к разработанному шаблону. В Power Query формируется сводная таблица по рекламным кампаниям без посещений и они добавляются к основным кампаниям (по которым можно отследить трафик из рекламных систем).

  Такое решение позволит, при необходимости, добавить новый источник в отчет за несколько минут.

  Сводим все данные в единое целое. Одна из задач, которую пришлось решать в процессе работы — получение в различных наборах данных реального идентификатора рекламной кампании, т.к. именно это значение используется в качестве ключа, по которому “связаны” все источники данных в модели.

Изначально в модели данных myBI эти сведения присутствовали в данных по РК (ID кампании в каждой из систем) и в данных из Google Analytics (источники трафика).

Поскольку для utm меток используется специальный формат (единый для всех систем) и он предусматривает включение id кампании на определенной позиции в соответствующей метке, то проблем с его получением не возникает.

Имея для источника трафика id кампании и такой-же id в данных по рекламных кампаниях, мы можем получить данные в связке: расходы на РК, сессии и достижения целей.

В некоторых исключительных случаях использовался метод сопоставления названия рекламной кампании и значения метки для получения ID кампании.

Ключ, используемый для связи данных выглядит как 1234567890, может возникнуть вопрос: "Каким образом все рекламные кампании были сведены в единое целое?".

Для этого использована модель myBI, в которой для каждой рекламной площадки или сервиса выгружается свой набор данных, для решения задачи потребовалось взять для каждой из систем следующие таблицы:

  • параметры кампаний;
  • статистика по объявлениям.

Т.к. такие данные используются в каждой системе, то для получения общей информации полученные данных были объединены в две указанные таблицы, которые используются в отчете.

  Поскольку на сайте от посетителя ожидается совершение определенных целевых действий, то они фиксируются целями в Google Analytics, что можно увидеть в отчете.

  Одним из основных показателей является показатель отказов, который рассчитывается как:

  и отображается в отчете наряду с остальными показателями.

  Что в итоге получилось? Общий вид отчета — это сводная таблица с данными по неделям, фильтрами по направлению и каналу:

  Сама сводная таблица за несколько кликов трансформируется на разные уровни от общей картины, до детальной картины по рекламным кампаниям.

Специфика отчета в том, что в нем нет графиков, а построена сводная таблица с хорошими возможностями трансформации. На первом этапе клиенту важно было получить именно такую сводную таблицу, так как внутри компании вокруг нее уже сформирован ряд процессов. В текущий отчет были заложены хорошие возможности по визуализации данных в виде графиков, так что если клиенту понадобится, он может сам добавить нужные графики (отчет полностью работает на клиентской инфраструктуре) или подключить к этому вопросу нашу команду.

Выполненная работа по созданию отчета помогла клиенту решить основную проблему — автоматизацию процесса сбора и оперативное получение данных, доступных в удобной и привычной форме. С учетом специфики продукта и источников трафика не все получилось автоматизировать на текущем этапе, однако и предложенное решение значительно упростило ранее выполнявшиеся операции по подготовке отчета.

Стоимость и сроки выполнения проекта.

Мы не можем озвучить стоимость проекта, это коммерческая тайна. А вот временные затраты можем, вместе со всеми встречами, скайпами, мозговыми штурмами, разработкой обучающих материалов, составлением документации, шаблонов и работами затраты составили 190 часов со стороны команды Mello.

Отзыв заказчика.

Head of digital marketing. Владимир Висков.

"Сотрудничество с Mello могу оценить исключительно с положительной точки зрения. Ребята быстро включились в работу – подобрали решение для отчетности, въехали в нестандартные для performance-агентств медийные метрики, проанализировали кучу нашей старой отчетности, документации и рекламные кабинеты, и уже через несколько месяцев сделали готовый продукт для анализа и последующей визуализации.

На выходе, помимо исходных файлов мы получили видеоинструкцию для внесения доработок, а также достаточно большой объем консультаций со стороны специалистов для настройки и последующей работы с файлами.

Отдельно хочется отметить, что создания подобного рода отчетности всегда сопровождается внедрением большого числа костыльных решений, из-за которых в последствие могут появиться разного рода проблемы. Коллеги из Mello предлагали такого рода решения, при которых кастомизация программного кода была минимальной из-за чего нам приходилось вносить изменения в нейминг более 200 рекламных кампаний, но оглядываясь в прошлое понимаем, что это было наиболее оптимальный вариант."


Перейти на сайт

В карточку агентства

Письмо автору кейса

Пользуйтесь реальным опытом в IT и следите за успехами потенциальных подрядчиков и конкурентов
Подпишитесь на рассылку
Читайте также
Кейсы по теме#Медицина и ветеринария
Проекты компании Proactivity Group